Public-Key Identification Schemes Based on Multivariate Quadratic Polynomials

نویسندگان

  • Koichi Sakumoto
  • Taizo Shirai
  • Harunaga Hiwatari
چکیده

A problem of solving a system of multivariate quadratic polynomials over a finite field, which is called an MQ problem, is a promising problem in cryptography. A number of studies have been conducted on designing public-key schemes using the MQ problem, which are known as multivariate public-key cryptography (MPKC). However, the security of the existing schemes in MPKC relies not only on the MQ problem but also on an Isomorphism of Polynomials (IP) problem. In this paper, we propose public-key identification schemes based on the conjectured intractability of the MQ problem under the assumption of the existence of a non-interactive commitment scheme. Our schemes do not rely on the IP problem, and they consist of an identification protocol which is zeroknowledge argument of knowledge for the MQ problem. For a practical parameter choice, the efficiency of our schemes is highly comparable to that of identification schemes based on another problem including Permuted Kernels, Syndrome Decoding, Constrained Linear Equations, and Permuted Perceptrons. Furthermore, even if the protocol is repeated in parallel, our scheme can achieve the security under active attack with some additional cost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Public-Key Identification Schemes Based on Multivariate Cubic Polynomials

Solving a system of multivariate polynomials over a finite field is a promising problem in cryptography. Recently, Sakumoto et al. proposed public-key identification schemes based on the quadratic version of the problem, which is called the MQ problem. However, it is still an open question whether or not it is able to build efficient constructions of public-key identification based on multivari...

متن کامل

Multivariate Quadratic Trapdoor Functions Based on Multivariate Quadratic Quasigroups

We have designed a new class of multivariate quadratic trapdoor functions. The trapdoor functions are generated by quasigroup string transformations based on a class of quasigroups called multivariate quadratic quasigroups (MQQ). The public key schemes using these trapdoor functions are bijective mappings, they do not perform message expansions and can be used both for encryption and signatures...

متن کامل

MQ*-IP: An Identity-based Identification Scheme without Number-theoretic Assumptions

In this article, we propose an identification scheme which is based on the two combinatorial problems Multivariate Quadratic equations (MQ) and Isomorphism of Polynomials (IP). We show that this scheme is statistical zero-knowledge. Using a trapdoor for the MQ-problem, it is possible to make it also identity-based, i.e., there is no need for distributing public keys or for certificates within t...

متن کامل

A Cryptanalysis of the Double-Round Quadratic Cryptosystem

In the 80’s Matsumoto and Imai [8] proposed public key cryptosystems based on the difficulty of solving systems of polynomials in several variables. Although these first schemes were broken, many others followed, leading to a very active field known as Multivariate cryptography. In this paper, we show how to break one of these schemes, the Double-Round Quadratic cryptosystem from [12]. We stres...

متن کامل

Time-Area Optimized Public-Key Engines: -Cryptosystems as Replacement for Elliptic Curves?

In this paper ways to efficiently implement public-key schemes based on Multivariate Quadratic polynomials (MQ-schemes for short) are investigated. In particular, they are claimed to resist quantum computer attacks. It is shown that such schemes can have a much better time-area product than elliptic curve cryptosystems. For instance, an optimised FPGA implementation of amended TTS is estimated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011